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. \ Abstract
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\, ( Ay
Y 12 this paper/jwe deacribesDDRPACK, a software package for the Or-
thogonal Distance Regression (ODR) problem. This software implements
the algorithm fescribed-in-{BogB665] for finding the set of parameters that
minimige the sum of the squared orthogonal distances from a set of ob-
servations to a curve determined by the parameters. It can also be used
to solve the ordinary nonlinear least squares problem. The ODR proce-
dure has application to curve fitting, and to the errors in variables problem
in statistics. The algorithm implemented is an efficient and stable trust-
region (Levenberg-Marquardt) procedure that exploits the structure of the
problem so that the computational cost per iteration is equal to that for
the same type of algorithm applied to the ordinary nonlinear least squares
problem. The package allows a general weighting scheme, provides for fi-
nite difference derivatives, and contains extensive error checking and report .
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1 Introduction

In [BogBS85) the authors provide an efficient and stable algorithm for the
orthogonal distance regression (ODR) problem. This problem is defined as
follows. Let (z;,3), ¢ = 1,...,n, be a given set of data where £, € R™
and % € R!. Suppose that the values of g are a function of z; and a set
of unknown parameters 8 € R”, but that both the y; and the z; contain
actual, but unknown, errors ¢! € R! and §* € R™, respectively. Then the
observed value of y; satisfles

%=f(z+6:8)-¢ i=1,...,n

for some actual but again unknown value §°. (Note that we have chosen
the sign of ¢, to be negative for convenience.) The orthogonel distance
regression problem is to approximate §* by finding the # for which the
sum of the squares of the n orthogonal distances from the curve f(z;8) to
the n data points is minimised. This is accomplished by the minimisation
problem .
' 144)
wg;(e‘ i &)
subject to the constraints

w=f(z+&8) -« i=1,...,n

Since these constraints are linear in ¢,, we can eliminate them and the ¢,,
thereby obtaining

min 3 [(/(x + 4:8) - w)* + 874 (1
=}

We obtain the final form of the problem to be solved by allowing a
general weighting scheme. Let w;, ¢ = 1,...,n, be a set of non-negative
numbers and let D; € R™*™, { = 1,...,n, be positive diagonal matrices.
| Then (1) is generalised to the weighted orthogonal distence regression prob-
lem

g a3 ! (/s + 438) - )" + 47 D24). @
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This weighting scheme enables us to apply our procedure to problems where
¢ and & have different variances, and to situations where various observa-
tions should be weighted differently.

The algorithm developed in [BogBS85) is a trust-region, Levenberg-
Marquardt method that exploits the structure of the problem to obtain a
procedure that is both stable and efficient. In the case of ordinary least
squares (OLS), i.e., where all of the § are assumed to be sero, the trust
region, Levenberg-Marquardt method requires O(np?) operations per it-
eration. (See, e.g., [DenS83] and [Mor77].) The order of operations per
iteration, and the constant for the highest order term, is the same for the
algorithm developed in [BogB8835| as for OLS. Note that a straight forward
use of an OLS algorithm on (2) would require O(n(n + p)?) operations per
iteration (see [BogB888]) which is clearly prohibitive for large values of n.

ODRPACK implements the algorithm presented in {BogB888). In § 2
we describe ODRPACK in detail and in § 3 we discuss the installation of
the package. Appendices A and B give a sample program and its output,
respectively. The complete user’s reference guide and installation manual
are distributed with the package.

2 Package Overview

3.1 Highlights

ODRPACK is a portable collection of ANSI '77 Fortran subprograms for
fitting a model to data. It is designed primarily for instances whea the in-
dependent as well as the dependent variables have significant errors. ODR-
PACK embodies a highly efficient algorithm for solving the weighted or-
thogonal distance regression problem. In addition, it can be used to solve
the ordinary least squares problem where all of the errors are attributed to
the obeervations of the dependent variable, .

ODRPACK is designed to accommodate many levels of user sophistica-
tion and problem difficulty.

o It is easy to wee, providing two levels of user-control of the com-
putations, extensive error handling facilities, comprehensive printed




reports, complete online documentation and no sise restrictions other
than effective machine sise.

e The necessary derivatives (Jacobian matrices) are approximated nu-
merically if they are not supplied by the user. In addition, the cor-
rectness of user-supplied derivatives can be verified by the derivative
checking procedure provided.

o Both weighted and unweighted analysis can be performed.

¢ Subseets of the unknowns can be treated as constants with their values
held fixed at their input values, allowing the user to examine models
with fewer parameters without rewriting the model subprogram.

o ODRPACK has a default scaling algorithm that attempts to auto-
matically accommodate poorly scaled problems in which the model
parameters and/or unknown errors in the independent variables vary
widely in magnitude. Alternatively, the user can supply appropriate
scaling values.

o ODRPACK is portable and is easily used with other Fortran subpro-
gram libraries. (See § 3.3.)

The following sections discuss the use of ODRPACK and provide a brief
description of ODRPACK's main features.

3.2 Implementation
3.2.1 Algorithm

A full discussion of the ODRPACK algorithm is found in |Bog BS#5|. Briefly,
ODRPACK implements a trust region Levenberg-Marquardt method, using
scaling to accommodate problems in which estimated values have widely
varying magnitudes. The Jacobian matrices, i.e., the matrices of first par-
tial derivatives of f(z;8) with respect to 8 and z, are computed at every
iteration either by finite differences or by a user-supplied subprogram (see
§ 2.2.3). The iterations are stopped when any one of three stopping criteria
are met. Two of these indicate the iterations have converged to a solution.




These are sum-of-squares convergence, which indicates that the change in
the sum of the squared weighted observational errors is sufficiently small,
and parameter convergence, which indicates the change in the parameters
is sufficiently small. The third stopping criteria is a limit on the number of
iterations.

32.3.2 Starting Values

The user must supply starting values for the unknowns being estimated, i.e.,
for 8 and 6. Users familiar with the ordinary nonlinear least squares prob-
lem are generally aware of the importance of obtaining good starting values
for the estimated function parameters. It is equally important here. Good
initial approximations can significantly decrease the number of iterations
required to find a solution; a poor initial approximation may even prevent
a solution from being found at all. Reasonable initial approximations are
often available from previous analysis or experiments. When good starting
values are not readily available, the user may have to do some preliminary
analysis to obtain them [Him70).

Users who do not provide scale information are strongly encouraged not
to use sero as an initial approximation for any of the function parameters,
Bs, k = 1,...,p, since a sero value can result in incorrect scaling (see *
§ 2.2.4). Setting the initial approximation to the largest magnitude which,
for the user’s problem, is effectively zero, rather than the actual value
sero, will help to eliminate scaling problems and possibly produce faster
convergence. For example, if §), represents change in a cost measured in
millions of dollars, then the value 10 might be considered “effectively sero”
and an initial value of #? = 10 is preferable to 59 = 0.

When using orthogonal distance regression it is also important to have
good starting values for the estimated errors, 4, s = 1,...,n. The ODR-
PACK default is to initialise § to zero, which is the most obvious initial
value. (Note that zero starting values for § do not cause scaling problems
similar to those discussed above for §.) Initializing & to sero, however, is
equivalent to initially assigning all of the errors to the dependent variable
as is done for ordinary least squares. While this is quite adequate in many
cases, in others it is not. A plot of the observed data and of the curve




described by the model function for the initial parameters may indicate
whether or not zero starting values for §; are reasonable and may make it
possible to visually determine better starting values for some of the §;. For
example, if such a plot shows that the vertical distance from a data point
(zi, ) to the curve is far larger than the orthogonal distance, then §; should
probably not be initialized to zero. This may occur near an asymptote or
near a local minimum or maximum. In such cases, it is often appropriate
to initialize §; to the horizontal distance from the data point to the curve.

2.2.3 Derivative Handling

As was noted in § 2.2.1 the Jacobian matrices, i.e., the matrices of first
partial derivatives of f(z;8) with respect to each § and each component
of z;, are required at every iteration. The user may provide the necessary
derivatives, or they can be computed by ODRPACK using finite differences.
Finite difference derivatives generally cause very little change in the results
from those obtained using analytic derivatives, provided sufficient precision
is used (typically double precision on a 32-bit machine).

Because coding errors are a common problem with user-supplied deriva-
tives, ODRPACK has an option to check the validity of the user-supplied
derivative code by comparing its results to finite difference values for the
derivative. The derivative checking procedure examines only one row of the
Jacobian matrices, and is therefore quite efficient. Checking only one row
is reasonable for regression models since the same code is frequently used
to compute the model function and derivatives for each row, as in the case
of the example shown in Appendix A.

When the value of the user-supplied derivative disagrees with the cor-
responding finite difference value, the checking procedure attempts to de-
termine whether the disagreement is due to an error in the user’s code or
is due to the inaccuracy of the finite difference approximation. The check-
ing procedure automatically generates an error report when one or more
of the derivatives are found to be either incorrect or questionable. This
report identifies which derivatives appear correct, which appear incorrect,
and which appear questionable and for what reason.
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2.2.4 Scaling

Poorly scaled problems, i.e., problems in which the unknowns, 8 and §, vary
over several orders of magnitude, can cause difficulty for least squares proce-
dures. ODRPACK’s scaling algorithm attempts to automatically overcome
these difficulties, although it is preferable for the user to choose the units
of the variable space so that each of the parameters § will have roughly
the same magnitude {DenS83]. When the variables have roughly the same
magnitude, the ODRPACK scaling algorithm will select scale values which
are equal, and the resulting computations will be the same (except for the
effect of finite precision arithmetic) as an unscaled analysis, i.e., an analysis
in which all of the scale values are set to one. If the variables do not have
roughly the same magnitude, the ODRPACK scaling algorithm will select
varying scale values. This will not change the optimal solution but may
affect the number of iterations required to find the solution, and, in some
cases, whether the algorithm is or is not successful.

Users may also select their own scale values as discussed in the ODR-

PACK reference guide.

2.2.5 Default Values and Structured Arguments

ODRPACK uses default values and structured arguments to simplify the .

user interface. The availability of default values in ODRPACK means that
the user does not have to be concerned with determining values for many of
the ODRPACK arguments unless the problem being solved requires the use
of non-default values. Structured arguments, described below, can reduce
the amount of storage space required for some arguments and the work
required by the user to initialize those arguments.

Default Values. Default values have been specified for ODRPACK sub-
program arguments wherever feasible. These default values are invoked by
setting the corresponding argument to any negative value. Arrays with
default values are invoked by setting the first element of the array to a
negative value, in which case only the first value of the array will ever be
used. This allows a scalar to be used to invoke the default values of arrays,
thus saving space and eliminating the need to declare such arrays.
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Users are encouraged to invoke the default values of arguments wherever
, possible. These values have been found to be reasonable for a wide class of
problems. Their use will greatly simplify the initial use of ODRPACK for
a given problem. Fine tuning of these arguments can then be done later if
necessary.

Structured Arguments. Certain ODRPACK arguments specify attrib-
utes of the individual components of X and A, where X is the n x m array
| with t~th row z; and A is the corresponding n x m array with 1-th row §;.
! These attribute arrays are frequently either constant for all components or
are constant within each column and vary only among the columns. The
structured argument facility allows a scalar to specify an attribute of an
entire column or of the whole array.
| For example, one such attribute array which might display this structure
‘ is the matrix of § weights, RHO, where RHO is an n x m array with t-th
i row the diagonal elements of D; (cf. (2)}). Suppose each row of X indicates
an hourly temperature reading and each column a different day on which
the temperature readings were taken. Then the user would probably want
to weight each component of A equally, and thus RHO would be constant
throughout. If one column of the independent variable contained hourly
temperature readings and the other hourly humidity readings, then the
user migiit want to weight each component in the first column of A the
same, and to weight each component in the second column the same, but
not necessarily want to weight the two columns equally. In this case, the
components of RHO would be constant within each column and would vary
only among the columns. Of course, in other cases, the user might want
to weight each component of A differently, and each component of RHO
would be different.
ODRPACK structured arguments exploit this structure. If each of the
n x m elements of an attribute array is the same, then a single value can
be used to specify all n x m elements. If the values of such an array only
vary among the columns, then each column of the array can be specified
by a single value. Thus, it is only necessary to supply all n x m elements
of the structured argument array when the elements of one or more of the
columns must be individually specified.
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r 3.2.6 Calling Sequences

As we noted in § 2.1, ODRPACK has two levels of user-control of the com-
putations. These levels are provided by user-callable subprograms SODR
and SODRC in single precision, and DODR and DODRC in double pre-
cision. SODR and DODR have shorter call statements than SODRC and
DODRC because they preset many variables to their default values in order
to reduce user input. (See § 2.2.5.) We believe that SODR and DODR are
adequate for most problems. SODRC and DODRC, with their expanded
call statements, provide the user with maximum flexibility in finding the
weighted orthogonal distance solution.

2.2.7 Automatic Output

ODRPACK automatically generates computation reports, thus saving the
user from the tedious chore of formatting the results for output. The

‘ ODRPACK computation reports are divided into three parts: an initial
summary, iteration summaries and a final summary. Each part can be
generated in either a long or short form, and the frequency of the itera-
tion summaries can be specified. By default, the computation reports in-
clude a “long” initial summary, no iteration summaries and a “short” final _
summary, as shown in Appendix B. ODRPACK user-callable subprograms
SODR and DODR automatically generate the default report; subprograms
SODRC and DODRC allow the user to control the computation reports.

2.3 Example Program

Appendix A shows an example of a user-supplied driver for invoking ODR-
PACK. This sample program uses the ODRPACK double precision sub-
program DODR to solve exercise I on pages 521 - 522 of |DraS81]. (An
example using ODRPACK single precision subprogram SODR could easily
be generaied from the one shown in Appendix A by substituting SODR for
DODR and changing the DOUBLE PRECISION declaration statement to
REAL.) The model for this example is

e B

T2, + 62,1 - 6_2(—)
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The report generated by ODRPACK for this example is shown in Appendix
B.

| 3 Installing ODRPACK

3.1 Supplied Software
3.1.1 ODRPACK Code

ODRPACK software is available in both single and double precision ver-
sions. These are distinguished by the first letter of the subprogram name:
D for double precision, S for single precision. The code for each version is
separated into three sections to facilitate installation.

The first section includes all subprograms written especially for ODR-
PACK. The two user-callable ODRPACK subprograms of each version are
listed first, followed by the ODRPACK exercise subprogram. The remain-
ing subprograms are then listed in alphabetical order. The code in this
section should not require any modification, unless the installer wishes to
customize the user-callable subprograms as discussed in § 3.2.

The second section of code includes the subprograms used by ODR-
PACK from the public domain packages LINPACK [DonMBS79] and BLAS °
(LawHKK79], also listed in alphabetical order. The installer can use local
versions of these packages if available. This would be particularly beneficial
if the installer’s machine has specially optimized versions of LINPACK or
BLAS.

The third section includes the only machine dependent subprogram in
ODRPACK. This subprogram supplies the machine dependent constants
used by ODRPACK. It already includes comment statements listing the
necessary constants for a number of common machines. If the constants
for the target machine are included in this subprogram, then the installer
need only “uncomment” the appropriate DATA statements. Note that this
subprogram will return an undefined value until it is updated; the installer
must update it before compiling and running ODRPACK.
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3.1.2 Test Drivers and Data

The ODRPACK supplied software includes drivers and data sets for running
ODRPACK in both single and double precision. There are three drivers
for each version of the code. Two of these drivers are simple programs
that users can modify to form their own ODRPACK drivers. The third is
a demonstration program which exercises ODRPACK s main features and
can be used to verify that the installation was completed successfully.
The demonstration program calls ODRPACK several times, with each
call testing one or more features of the package. The results of each call are
automatically compared to the results obtained by the authors using the
double precision version of ODRPACK run on a CYBER 855 under NOS
2.4.2 (120 bits per double precision value). The success, or failure, of each
test is noted individually in the output generated by this program, and is
summarized for all of the data sets. By running this demonstration, the
installer can easily be assured that the package is performing as it should.

3.2 Customizing ODRPACK
ODRPACK is designed to easily accommodate a wide variety of problems

without any modification to the supplied code. However, installers might .

want to customize the user interface, i.e., the user-callable subprograms, or
to customize the ODRPACK generated reports for specific tasks.

Customizing ODRPACK is simplified by the extensive comments con-
tained within each subprogram, and the consistent use of variable names
between subprograms. The SLATEC Source File Format (FonJS82| has
been followed, and each subprogram provides a standardized prologue de-
scribing the purpose of the subprogram and what other subprograms are
called, an alphabetical list of all variables referenced by the subprogram
and how they are used, as well as comments explaining the major sections
of the code.

In addition, ODRPACK s automatically generated reports are produced
by separate subprograms. Because the report generators are isolated in this
manner, it is relatively easy to produce customized reports if required.
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3.3 Portability

ODRPACK code coaforms to the ANSI X39-1978 FORTRAN standard
and has besn successfully installed on a Cyber 855, Cyber 208, IBM PC/AT,
Coacurreat 3230 and Vax 11/780. We believe it will be possible to install
ODRPACK on any system with an ANS] Fortran '77 compiler and adequate

memory.

il
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A Sample program

PROGRAN SANPLE

SET PARAMETERS FOR MAXINUM PROBLEM SIZE HANDLED BY THIS DRIVER
VHERE MAXN IS THE MAXINUN NUMBER OF OBSERVATIONS ALLOWED,
MAXN IS THE MAXINUM NUMBER OF COLUMNS IN THE
INDEPENDENT VARIABLE ALLOWED, AND
MAXNP IS THE MAXINUM NUMBER OF FUNCTION PARAMETERS
ALLOVED.

OO0 0O00O0O0O0

INTEGER MAXN ,MAXM,MAXNP
PARAMETER (MAXN=15,MAXM=5 ,NAXNP=5)

(2]

SET PARAMETERS TO SPECIFY DINENSIONS OF ARRAYS USED BY DODR

INTEGER LDX ,LDRHO,LWORK,LIVORK
PARANETER
(LDX=MAXN,
LDRHO=1,
LYORK = © + SoMAXN ¢ 10°MAXNeMAXN + 2¢MAXN*NAXNP + 8+MAXNP,
LIVORK = 2+MAXNP + MAXIN + 10)

* & & o

DECLARE USER-SUPPLIED SUBROUTINES AND
ALL OTHER NECESSARY VARIABLES AND ARRAYS

a0 00

RXITERNAL
« FUR, JAC
INTEGER
¢« NN NP,
. JOB,
. IVORK (LIWORK) ,
. INFO
DOUBLE PRECISION
. X(LDX ,NMAXN) .
. Y(LDX) .
. BETA(NAXNP),
¢  RNO(LDRHO.MAXN) .
¢ VWORK(LWORK)




-

c
OPEM(UNIT=6,FILE="DATAL")
OPEM(UNIT=6,FILE="REPORT")

c
C READ NUMBER OF OBSERVATIONS
c NUMBER OF COLUMNS OF DATA IN THE INDEPENDENT VARIABLE
c NUMBER OF PARAMETERS
c OBSERVED VALUES OF INDEPENDENT AND DEPENDENT VARIABLES
c STARTING VALUES OF FUNCTION PARAMETERS
¢

‘ READ (5,s) N,N.NP

| READ (6,¢) ((X(I,J).I=1,N),J=1,N)

READ (6,#) (Y(I).I=1,W)

| READ (6,¢) (BETA(I) I=1,NP)

| c

| C SPECIFY DELTA WEIGHTS

| c

RHO(1.1) = 3.0DO
RHO(1,2) = 6.0D0

c
C S8ET JOB TO DEFAULT SETTING, INDICATING

c - SOLUTION TO BE FOUND BY ODR

C - DERIVATIVES TO BE COMPUTED BY FINITE DIFFERENCES
c - DELTA'S TO BE INITIALIZED TO ZERO

c

JoB = -1
C COMPUTE ODR SOLUTION USING FINITE-DIFFERENCE DERIVATIVES

CALL DODR
(FUN,JAC,
N.N.NP,
X.LDX,
L
BETA,
RHKO, LDRHO,
Jos,
WORK ,LWORK , IWORK ,LIWORK,
INFO)

& 4 4 4+ b I b
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C | 
END )
SUBROUTINE FUN(N,NP,N,BETA,XPLUSD,LDXPD.F,IFLAG)

c y

C INPUT ARGUMENTS

C (WHICH NUST NOT BE CHANGED BY THIS ROUTINE) D

c
INTEGER M,NP,N,LDXPD .
DOUBLE PRECISION BETA(NP),XPLUSD(LDXPD,N) .

'] [

C OUTPUT ARGUMENTS N

c ')
DOUBLE PRECISION F(N)

INTEGER IFLAG y

c 3

-

DO10I=1,N "
F(I) = EXP(-BETA(1)*XPLUSD(I,1)s SR

+ EXP(-BETA(2)* -
+ (1.0DO/XPLUSD(I,.2) - 1.0D0/620.0D0))) D
10 CONTINUE '~
¢ »
™

RETURN . e
END ’
s
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B Sample output

Report generated by DODR example program from Appendix A, run using
a Cyber 180/855 under NOS 2.4.2.

SOOGS0 PSOPSRESOSOR USROS OSSR RIICCEIOROSEENOSNS

* ODRPACK VERSION 1.2 OF 12-15-08 (DOUBLE PRECISION) «

| OS5 S00000S 080G SSREOPPEL O RSP SEOSOSECESOOPEICISOSSE

INITIAL SUMMARY FOR FIT BY METHOD OF ODR

|
|
| ssssssassssssesssassesssnsansasssansnass
|

PROBLEM S12E:
WUMBER OF ODSERVATIONS 8
NUMBER OF COLUWNS OF DATA IN INDEPENDENT VARIABLE 2
NUMBER OF FUNCTION PARANETERS 2
NUMBEIR OF UNFIXED FUNCTION PARAMETERS 2
INDEPENDENT VARIABLE AND DELTA VWEIGHT SUMMARY:
CoLUm 1 coLlne 2
088 1 oBs w 0Bs 1 oBS N
X - .10000D+03  .68000D+02 .60000D+03  .64000D+03
FI1XED - n NO no )]

INITIAL DELTA - .00000D0+00  .00000D+00  .00000D+00  .0OO00D+00
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DELTA SCALE - .78740D-03  .78740D-03 .15628D-02 .16626D-02
DELTA WEIGHTS - . 300000 +01 . 30000D+01 . 50000D+01 . 50000D+01

DEPENDENT VARIADLE AND OBSERVATIONAL ERROR WEIGHT SUNMARY:

..........................................................

oS 1 oPs N
Y - .912000+00 .37600D+00
OBS. ERROR ¥TS. - . 10000D+01 . 100000+01

INDEX - 1 2
INITIAL BRTA - . 116500000-01 . 50000000D +04
FIXED - no Y]

BETA SCALE - . 90580087D+02 200000000 -03

Jos TAUFAC SSTOL PARTOL MAXIT
-0001 .10D+01 .800-14 .08D- 19 60

FIT I8 BOT A RESTART.

DELTAS ARE INITIALIZED TO ZERO.

DERIVATIVES ARE COMPUTED BY FINITE DIFFERENCES.
FIT 18 DY NRTHOD OF ORTHOGONAL DISTANCE REGRESSION.

COow >
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INITIAL SUMS OF SQUARKS:

------------------------

SUN OF SQUARED WEIGHTED OBSERVATIONAL ERRORS .67662011D+00
SUN OF SQUARED WEIGHTED DILTAS .00000000D+00
SUM OF BSQUARED WEKIGHTED EPSILONS .67682011D+00

FINAL SUMMARY FOR FIT BY NETHOD OF ODR

STOPPING CONDITION (INFO = 1):

...................................

TRE RELATIVE CHANGE IN THE SUN OF THE SQUARED
VEIGHNTED OBSERVATIONAL ERRORS I8 LESS THAN SSTOL

CONDITION
NUMBER OF NUMDER OF NUMBER RANK
ITERATIONS FN EVALS (INVERSE) DEFICIENCY
6 38 .1888D-08 o
FIRAL SUNS OF SQUARKS:
SUN OF SQUARED VEIGHTED OBSERVATIONAL ERRORS .76382323D-08
SUN OF SQUARED WEIGHTED DELTAS .236420000-07
SUN OF SQUARED WEIGHTED EPSILONS .763799600-03
17
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ESTIMATED BETA(I), I =1, ..., NP:

..................................

INDEX VALUE ~-----c--cecn- >
170 2  .36579727D-02 .27627337D+06

ESTINATED EPSILON(I) AND DELTA(I,s), I =1, ... 6 N:

EPSILON(I) DELTA(I,1) DELTA(I,2)
.16762446D-02 .14086172D-06 .42418798D-06
.20434718D-02  .128382220-05 .20262810D-056

-.20690086D-01 -.71662201D-06 -.23368824D-04
.243068320-02 .16047002D-05 .24114481D-06
.72777482D-02 .23393281D-06 .82079313D-06
.40793264D-02  .24162846D-056 .40483562D-00
.13043071D-01 .43337344D-06  ,14726727D-04

- .854008490D-02 -.51304680D-05 -.84861063D-06

® NN W N -
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